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possibilities are illustrated by eq 3 and 4. An equilibrium be
tween 11 and 1419 with accompanying oxidation of 14 (eq 5) 
readily accounts for formation of azo acetal 12. A comparison 
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of the mechanistic features of processes 3 and 4 show that the 
only intrinsic difference between them occurs in the initial 
achimerically assisted ionization step a or b. 

Evidence for 13a or 13b as an intermediate in the ethanolysis 
of 3-OBs was sought from information about the chemical 
properties of trialkyldiazenium ions. The literature failed to 
show any reaction results for the conditions of eq 2.20 Conse
quently, we examined the ethanolysis (lutidine) of 1521 as a 
model system. Pertinent products were acetaldehyde diethyl 
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X 
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acetal (16, 35%), isobutylene (17, 50%), and ethyl tert-b\ity\ 
ether (18,40%).22 A substantial yield of 16 demonstrates that 
diazenium ions containing a -CH2-N+ moiety react with 
ethanol to give acetal. The combined formation of 17 and 18 
is diagnostic of the high propensity of diazenium ions with t-
C4H9-N+ to react with the loss of 7er7-butyl cation. This 
finding suggests that ethanolysis of 3-OBs occurs by eq 3 via 
13a.23 
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Kinetic Energy Release in the 
Fragmentation of CSH3

+ Ions 

Sir: 

It is well established1'2 that the reaction 

C H 2 X H + ^ HCX + + H2 (X = O, S, NH) (1) 

occurs with significant release of kinetic energy. This has been 
interpreted2 in terms of a symmetry-forbidden 1,2-H2 elimi
nation reaction which imposes an activation energy barrier 
greater than the endothermicity of the reaction. Recent the
oretical calculations3'4 have confirmed the presence of such 
a barrier. By contrast 1,1-H2 elimination is not symmetry 
forbidden and it has been observed that such fragmentation 
reactions show little kinetic energy release.5 This suggests that 
the reaction 

CH3X+ — HCX+ + H2 (X = O, S, NH) (2) 

for CH3X+ ions, isomeric with CH2XH+, should occur with 
little kinetic energy release. For X = O it has been noted6 that 
reaction 2 (CH3O+ ~* HCO+ + H2) is thermoneutral or 
exothermic7 and no metastable ion is observed. Indeed, because 
of the facile loss of H2 the m/e 31 ion (COH3

+) is of very low 
abundance, compared with HCO+, in compounds where 
simple bond rupture to give the methoxy cation might be ex
pected.6 

By contrast, the CSH3
+ ion (nominally CH3S+) is abundant 

in the mass spectra of compounds of the general formula 
CH3SR.7 In addition, the available thermochemical data8,9 

suggest similar heats of formation for CH3S+ and CH2SH+. 
These observations lead to the possibility that for the sulfur 
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Table I. Kinetic Energy Release in Loss of H2 from CSH3
+ 

precursor nominal reaction 7"o.5, eV 

CH3CH2CH2SH CH2SH+ — CHS+ + H2 0.93 
CH3SSCH3 CH3S+^CHS+ +H2 0.94 
CD3SH CD2SH+ — CDS+ + HD 0.91 
CD3SH CD3S

+ — CDS+ + D2 0.93 

system one might be able to compare kinetic energy releases 
for the 1,2-H2 elimination reaction 1 and the 1,1-H2 elimina
tion reaction 2 for isomeric ions. Table I records the kinetic 
energy releases calculated from the half-height widths of the 
metastable peaks observed10 for fragmentation of ions nomi
nally of structures CH2SH+ and CH3S+. Both metastable 
peaks were observed to be "flat-topped" and showed kinetic 
energy releases identical within experimental error. The mass 
spectrum of CD3SH shows8 ion currents corresponding, 
nominally, to CD3S+ and CD2SH+ in the ratio 1:2.2. The 
former ion showed a metastable peak for loss of D2, while the 
latter showed a metastable peak for loss of HD only, the ratio 
of intensities for the two metastable peaks being the same as 
the ratio of precursor ion abundances. As shown in Table I, the 
kinetic energy releases for the two fragmentation reactions are 
the same and are in agreement with the kinetic energy releases 
measured for the unlabeled analogues. 

Clearly the ions nominally with the thio methoxide structure 
are not losing H2 by a simple 1,1-H2 elimination reaction in
volving the small kinetic energy release characteristic of 1,1-H2 
elimination reactions.5 The identity of the kinetic energy re
leases suggest an identical reaction pathway for ions with the 
CH3S+ and CH2SH+ nominal structure. This conclusion can 
be rationalized in three possible ways. (1) The dissociative 
ionization of CH3SR leads not to CH3S+ but rather to 
CH2SH+ as a result of H migration from carbon to sulfur 
concurrent with fragmentation." (2) The dissociative ion
ization OfCH3SR and RCH2SH leads to structurally distinct 
ions which isomerize to a common structure (or mixture of 
structures) prior to fragmentation. (3) The CH3S+ and 
CH2SH+ ions remain structurally distinct but fragment 
through a common transition state (of energy higher than 
HCS+ + H2) with the observed kinetic energy release origi
nating from conversion of part of the reverse activation energy 
into kinetic energy. 

The data do not allow a distinction between these possibil
ities. The available thermochemical data8,9 suggest 
ATZf(CH3S

+) = 210-214 kcal mol"1 with AZZf(CH2SH+) 
being slightly higher (215-219 kcal mol-1).12 No reliable 
experimental value for AZZf(HCS+) exists; however, a recent 
theoretical calculation4 gives a value of 245 kcal mol-1 com
pared with a calculated value of 212 kcal mol-1 for 
AZZf(CH2SH+). Thus the fragmentation reactions of both 
CH3S+ and CH2SH+ are significantly endothermic and 
metastable ions for fragmentation of both would be expected. 
The small difference in the heats of formation of the isomeric 
CSH3

+ ions does not permit a clear distinction as to the 
structure formed by dissociative ionization; at the same time 
there does not appear to be any energetic driving force for re
arrangement during fragmentation OfCH3SR to form CSH3

+. 
With regard to isomerization after fragment ion formation, 
the MINDO/3 calculations of Dewar and Rzepa4 reveal stable 
bridged structures for CSH3

+ which are lower in energy than 
HCS+ + H2 and could serve as transition states for such an 
isomerization. However, the observation that the CD2SH+ ion 
loses only HD (i.e., H/D randomization does not occur) argues 
against such an isomerization prior to fragmentation. In their 
MINDO/3 calculations Dewar and Rzepa4 have identified a 
transition state for loss of H2 from CH2SH+, although they 
did not report any calculations relating to the CH3S+ structure 
or the transition state for H2 loss from this structure. Thus, the 

possibility remains that both CH3S+ and CH2SH+ are 
structurally distinct but fragment through a common transition 
state, possibly preceded by a bridged intermediate. In any 
event, the present results are in agreement with the recent 
conclusions from collisional activation studies13 that the 
fragmentation reactions of nominally isomeric CSH3

+ ions are 
identical for ions of low internal energy. 

Work on this and related systems is continuing. 
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CIDNP Evidence for Electron Transfer between 
Two Neutral Radicals in Solution1 

Sir: 

It has long been known that mixed diacyl peroxides (la) 
decompose thermally2 by the pathways shown in Scheme I. 
The polar pathway,2-3 which yields a "carboxyl inversion" 
product4 (4a), has many of the characteristics of an alkyl-group 
migration to electron-deficient oxygen.3 The remaining re
actions represent collectively the well-known radical pathway 
for decomposition5 in which a pair of radicals (2) either re-
combine or escape from the solvent cage and are scavenged by 
reaction with the solvent, added scavenger, another molecule 
of peroxide, or other radicals. 

We report here evidence for a previously undocumented 
electron-transfer pathway for recombination (Scheme II) 
which competes with radical coupling and disproportionation.6 

The peroxide employed was rer?-butylacetyl-w-chloroben-
zoyl peroxide (lb).7 In this reaction an electron is transferred 
between the neopentyl (9) and m-chlorobenzoyloxy radicals 
to form w-chlorobenzoate (11) and the neopentyl cation (8). 
Subsequent Wagner-Meerwein rearrangement of 8 yields 
cation 10 which loses a proton to produce 2-methyl-l-butene 
(5), 2-methyl-2-butene (6), and 1,1-dimethylcyclopropane (7) 
(yields are reported in Table I). 

Evidence that products 5-7 arise from the geminate radical 
pair (2) is obtained from the observation of CIDNP during the 
reaction. In Figure 1 is shown the 1H NMR spectrum obtained 
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